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Abstract—We have been proposing “NTMobile” (Network
Traversal with Mobility) that realizes secure connectivity as
well as mobility enabling the switching of networks during
communication in IPv4 and IPv6 networks. In our conventional
implementation method adopted for NTMobile, it has been rather
difficult for ordinary users to use it because a kernel module is
required to be installed in the smartphone, and as a result, it has
been an issue how to popularize NTMobile among ordinary users.
In this paper, we propose a mobile communication framework
that NTMobile functions are all ported in the level of application,
and that provides the basis for developing mobile applications
suitable for IPv4 and IPv6 networks. We have implemented
our proposed method to a commercially available Android
smartphone and an iPhone, and verified the full connectivity
and mobility.

Index Terms—Mobility, NAT Traversal, IPv4 and IPv6 net-
works.

I. INTRODUCTION

With the popularization of high-efficiency mobile terminals
and the development of wireless technologies, demand for
Internet services for mobile terminals and for mobile ap-
plications has been rapidly increasing. On the other hand,
exhaustion of global IPv4 addresses has become a serious
problem in the present Internet, and thus, it has become
a common practice to establish private networks in IPv4
networks by introducing NAT (Network Address Translation).
In the environment in which NAT is introduced, however,
there occurs a so-called “NAT traversal problem” in which
connectivity from a node on the global network side to another
node on the private network side cannot be secured, which
has thus become a factor of spoiling the fundamental idea
of the Internet that should ensure end-to-end connectivity.
Meanwhile, the Internet is presently in the transitional period
from IPv4 to IPv6, IPv4 and IPv6 networks is gradually
spreading, despite the fact that they have no compatibility with
each other. Under such circumstances, it is necessary to secure
connectivity to mobile terminals in the NAT environment
as well as in IPv4 and IPv6 networks in order to develop
applications that enable direct communication between mobile
nodes.

In the meantime, a number of wireless interfaces such as 3G,
Wi-Fi and WiMAX are normally equipped in smartphones, and
it is possible to make communication by changing interfaces as
required. However, because communication is identified based

on IP addresses assigned to individual interfaces in the node in
IP networks, communication cannot be maintained if and when
an IP addresses changes due to the switching of interfaces
or networks. The technology to solve this kind of problem
is called “IP mobility technology”, and various technologies
have been proposed thus far [1]–[5]. But, it is difficult for
ordinary users to use them with Android or iPhone, because
some modification to OS or kernel is required.

In [3], SIP mobility is proposed where mobility is realized
based on an application layer using SIP (Session Initiation
Protocol). In the case of SIP mobility, the application makes
communication based on SIP, and even when networks are
switched, communication is maintained on the strength of
SIP’s session continuation function. In SIP mobility, since
there is no need to install any specific module to OS or kernel,
communication can be maintained easily even with commer-
cially available with mobile terminals. However, because SIP
mobility assumes communication on UDP alone, there exists
a problem that TCP session cannot be maintained. Although
All-SIP mobility has been proposed as a technology that has
solved the above said problem, however it is difficult to use
it commercially available, because it requires installation of a
virtual interface or an SMC (Session and Mobility Controller)
[4].

We have been proposing “NTMobile” (Network Traversal
with Mobility) that realizes secure connectivity and mobility
which enabling the switching of networks during communica-
tion in IPv4 and IPv6 networks, at the same time [6]–[8]. As
NTMobile has the function of NAT traversal technology, it can
secure connectivity to mobile nodes behind NAT in IPv4 and
IPv6 networks, without any modification to NAT. NTMobile
has already been implemented to Android smartphones, and
its effectiveness in IPv4 and IPv6 networks has already been
verified. Yet, in the case of our conventional NTMobile
implementation it is rather difficult for ordinary users to use
it with ease, because a kernel module and a daemon program
are required to be installed to the smartphone.

In this paper, we propose a mobile communication frame-
work that realizes secure connectivity and mobility in IPv4
and IPv6 networks with mobile terminals carried by ordinary
users, by realizing the function of NTMobile on the level of
application. Mobile application developers are easily able to
realize applications that make direct communication between
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mobile nodes, by using our proposed. We have also developed
a prototype of our proposed method and made an evaluation
of the handover processing, by using an Android smartphone
and an iPhone.

We are going to overview our NTMobile in Chapter II, de-
scribe the outline and implementation of our proposed method
in Chapter III, the results of our performance evaluation and
issues to consider hereafter in Chapter IV and the summary
in Chapter V.

II. NTMOBILE

A. Outline

In NTMobile, virtual IP addresses are assigned to NTMobile
nodes (NTM nodes), and the application makes a connection
based on virtual IPv4 addresses or virtual IPv6 addresses.
Packets based on virtual IP addresses are transmitted by a
UDP tunnel established between NTM nodes. As the UDP
tunnel is established on an end-to-end basis except for certain
specific cases, NTM nodes can make tunnel communica-
tion through the most appropriate route. Using the above-
mentioned method, applications can make communication
freely without being affected by the switching of networks
or by the existence of NAT on the communication route, and
by the difference of the real IPv4 and real IPv6 networks.

The overview of NTMobile system is shown in Fig. 1.
NTMobile consists of NTM nodes, DC (Direction Coordina-
tor), and RS (Relay Server). DC and RS are placed in the
Dual Stack Network, and multiple units of them can be set
depending on the size of the network.

• NTM node
NTM node has two kinds of addresses; namely, one is
a real IP address assigned by the real network and the
other a virtual IP address assigned by DC. The virtual IP
address remains unchanged even if NTM node switches
its networks. To the NTM node, virtual IP addresses of
both IPv4 and IPv6 are assigned, and the application
makes communication based on either of the virtual IPv4
address or the virtual IPv6 address.

• DC（Direction Coordinator）
DC is a coordinator to manage the assignment of virtual
IP addresses and to give instructions to the NTM node to
establish tunnels. The virtual IP address to be assigned
to the NTM node is a unique address and each DC
undertakes assignments in a way that no duplication
occurs from the address space allocated to itself. DC also
is managing address information of the NTM node by
using database. In the database of DC, such information
as real IPv4 addresses, real IPv6 addresses, virtual IPv4
addresses, virtual IPv6 addresses, and real IPv4 addresses
outside NAT, is registered.

• RS（Relay Server）
RS is a server to relay communications under certain spe-
cific circumstances; e.g., when communication is made
between NTM nodes located behind different NATs,
or communication is made with a general node which
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Fig. 1. Overview of NTMobile.

does not have the function of NTMobile. When NTM
nodes behind different NATs are to make communication
with each other, it is possible to switch to the end-to-
end tunnel route by conducting route optimization. Also,
when communication is made between different address
families like the case of NTM node A and NTM node
B, as illustrated in Fig. 1, tunnels are established with
RS set in the Dual Stack Network, and communication
is made via RS. Multiple units of RS can be set on the
Internet, and the most suitable RS is selected at the time
of creating a tunnel by taking account of the relay load
and the route redundancy.

Based on the assumption that DC and each node have
a reliable relationship, each message used by NTMobile is
encrypted by an encryption key, and MAC (Message Authen-
tication Code) is added. Encryption key is delivered from DC
at the time of tunnel creation.

B. Implementation of NTM node and Issues to Consider

NTMobile has already been implemented to Linux PC and
Android smartphone, and its effectiveness in IPv4 and IPv6
networks has already been verified. The NTM node functions
when a daemon program (NTM daemon) which performs
tunnel creation process, a kernel module which performs en-
capsulation and encryption process of application packets with
real IP addresses, and a virtual interface, are implemented.
The NTM node starts tunnel creation process when its kernel
module has hooked a request for name resolution, and returns
a name resolution response to the application, by describing
the virtual IP address of the correspondent node. Through this
process, the application recognizes the virtual IP address as the
IP address of the correspondent node and starts communication
based on the virtual IP address. Communication packets based
on the virtual IP address are encapsulated and encrypted by
the kernel module and transmitted to the correspondent node
through the UDP tunnel established between NTM nodes.
NTM node, when receiving encapsulated packets, decrypts
and decapsulates them by its kernel module, and receives
extracted virtual IP packets from the virtual interface. Through
the above-mentioned process, the application of NTM nodes
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performs communication based on virtual IP address.
In order to install a kernel module and an NTM daemon

to an Android smartphone, root authorization needs to be
obtained and the kernel needs to be reconstructed. Thus, it
has been difficult for ordinary users to use NTMobile with
ease. Another problem has been that it cannot used in iPhones
which do not have a Linux kernel. So the question has been
how to popularize the system among ordinary users.

III. MOBILE COMMUNICATION FRAMEWORK

A. Outline

In this paper, we propose a mobile communication frame-
work that realizes full connectivity and mobility in IPv4
and IPv6 networks by using commercially available Android
smartphones or iPhones, by implementing the NTM node
function as the framework on the level of application.

The outline of the mobile communication framework is
shown in Fig. 2. NTMobile is applied in order to secure
mutual connectivity in IPv4 and IPv6 networks, to solve NAT
traversal problem, and to realize mobility. For those purposes,
we set multiple units of DC and RS in real networks, like the
case of the NTMobile network configuration as explained in
Chapter II. The NTM node is based on commercially available
devices such as Android smartphones and iPhones equipped
with mobile applications. In our proposed method, unlike the
case of conventional NTM nodes, we implement the mobile
communication framework with the function of NTM node
to the level of application. With this method, each user is
able to make mobile communication based on NTMobile, by
merely installing a mobile application to his or her own mobile
terminal.

The module configuration of a mobile communication
framework is shown in Fig. 3. The mobile communication
framework consists of such modules as a negotiation module
which performs tunnel creation process, a packet manipulation
module which performs encapsulation and encryption process,
and a handover module which detects changes in the state of
network connections based on the communication manage-
ment function provided by OS. In addition, the mobile com-
munication framework provides the application with virtual
socket API so as to conduct communication by virtual IP ad-
dresses. The application makes communication using the API
provided by the mobile communication framework, instead of
the API provided by OS. Through this process, the detection of
name resolution process and encapsulation/encryption process
of packets based on virtual IP addresses which has been
conducted by a kernel module in the conventional NTM node,
are realized on the level of application. Meanwhile, as the
virtual socket API provided by the mobile communication
framework has compatibility with ordinary socket APIs like
BSD (Berkeley Software Distribution) socket, applications can
utilize it in the same procedures as those of the ordinary socket
API.
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B. Communication process

Fig. 4 shows the situation where NTM node MN (Mobile
Node) which is connected to the IPv4 global network makes
UDP communication of the virtual IPv6 based on a mobile
application using the mobile communication framework, with
NTM node CN (Correspondent Node). Hereinafter, we call
FQDN at the node X as “FQDNX”, virtual IPv6 address as
“VIP6X”, real IPv4 address as “RIP4X”, real IPv6 address
as “RIP6X”. Also, we call Path ID to identify the tunnel
established between MN and CN as “PIDMN−CN”.

1) Registration Process
MN’s and CN’s applications undertake registration pro-
cess for NTMobile at the time of start-up, by calling
up Registration API. Through this process, the real IP
addresses which MN and CN obtained from the network
are registered in DC. It is noted that the registration
process is the only specific process undertaken by ap-
plications using the mobile communication framework,
and all processes thereafter are performed in the same
manner as that of the case of using ordinary socket
API. In the case of our example described in Fig. 4,
MN’s and CN’s applications generate virtual sockets
based on the virtual socket connection API and wait
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for communication from other terminals.
2) Name Resolution Process

MN’s application executes the name resolution pro-
cessing of FQDNCN, by using the virtual socket API
before starting communication to CN. On that occasion,
the tunnel establishment process is executed by the
negotiation module and a tunnel between MN and CN
is established. After the tunnel establishment, MN’s
application obtains VIPCN as the result of the name
resolution processing.

3) Sending Process
After completing the name resolution process, MN’s ap-
plication sends data towards VIP6CN by using the virtual
socket API. When the virtual socket API is called up, a
virtual IP packet addressed to VIP6CN is created from
VIP6MN by the packet manipulation module. Thereafter,
the packet manipulation module searches the tunnel table
by using the virtual IP address VIP6CN as the search
key, and encapsulates the virtual IP packet in accordance
with the entry. At the time of encapsulation, an NTM
header describing PIDMN−CN is attached to the virtual
IP packet in order to perform encryption and MAC
addition. Then, the encapsulated packet is transmitted
to RIP4CN, which is the other end of the established
tunnel. At the time of transmitting the packet, since the
packet is sent from the UDP socket generated by the
socket API provided by OS, the virtual IP packet sent by
the application to VIP6CN is encapsulated by the UDP
packet based on the real IP address and transmitted to
RIP4CN.

4) Receiving Process
The packet manipulation module of CN’s application,
upon receiving an encapsulated packet, searches the
tunnel table by PIDMN−CN described in the NTM
header of the encapsulated packet as the search key, and
performs decryption and decapsulation in accordance
with the entry. The packet manipulation module hands

over the payload portion of the virtual IP packet to the
virtual socket to which the destination port number of
the extracted virtual IP packet is assigned. Through this
process, CN’s application receives data sent by MN’s
application through the virtual socket created by the
virtual socket API.

By undergoing all the above processes, MN’s and CN’s
applications are able to make communication based on the
virtual IP addresses.

C. Handover Process
The handover module executes the handover process at the

time when networks are switched as a result of mobile node
relocation or Wi-Fi’s on/off operation. The handover module
calls the negotiation module and registers in DC the real IP
address obtained from the network in the same procedure as
that adopted at the time of an application start-up. In this way,
reachability to NTM Node is secured.

In the meantime, the negotiation module reestablishes a
tunnel towards CN in the same procedure as that adopted at
the time of a communication start-up. At the time of tunnel
reestablishment, DC indicates the most suitable tunnel route,
corresponding to the network by which MN and CN are
connected, and a tunnel is reestablished between MN and CN.
Because the applications of MN and CN are making commu-
nication based on the virtual IP addresses, the communication
can be kept without being affected by the change of real IP
addresses.

IV. EVALUATION AND ISSUES FOR CONSIDERATION

A. Performance evaluation
We conducted a behavior verification and the performance

evaluation of handover process by implementing a mobile
application using a prototype of the mobile communication
framework to an iPhone as well as to an Android smartphone.
Meanwhile, to the prototype virtual TCP/IP stack, we imple-
mented UDP functions this time.
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TABLE I
THE MEASUREMENT PATTERN

Mobile Device Access Network
MN CN MN (before/after the handover) CN

Case 1-1 iPhone 5 Galaxy Nexus LTE (IPv4) ⇒ Wi-Fi (IPv6) 3G (IPv4)
Case 1-2 Galaxy Nexus iPhone 5 3G (IPv4) ⇒ Wi-Fi (IPv6) LTE (IPv4)
Case 2-1 iPhone 5 Galaxy Nexus Wi-Fi (IPv6) ⇒ LTE (IPv4) 3G (IPv4)
Case 2-2 Galaxy Nexus iPhone 5 Wi-Fi (IPv6) ⇒ 3G (IPv4) LTE (IPv4)
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Fig. 5. Evaluation environment.

The measurement environment and the average RTT
(Round-Trip Time) between certain specific types of devices
are shown in Fig. 5. DC and RS are established with virtual
machines, and Apple iPhone 5 and Samsung Galaxy Nexus are
used for MN and CN. APIPv6 was set as an ordinary access
point by inactivating its router function. It should be noted
here that with the Galaxy Nexus which we used this time,
forcible disconnection from AP occurred at the time when we
failed the operation of obtaining IPv4 address based on DHCP
(Dynamic Host Configuration Protocol) and as a result, we
could not get a connection with IPv6 network. Because of
such an unexpected problem, we statically established 0.0.0.0
as the IPv4 address in Wi-Fi interface of Galaxy Nexus when
connecting with APIPv6. At the time when iPhone 5 and
Galaxy Nexus were connected to APIPv6, connection was
conducted by IEEE 802.11n, and WPA/WPA2-PSK (AES) was
used as encryption and authentication functions. And, when
Wi-Fi is in an inactivated state, iPhone 5 is connected to IPv4
mobile network based au LTE and Galaxy Nexus is connected
to IPv4 mobile network based b-mobile 3G.

We used iPhone 5 and Galaxy Nexus as MN and CN and
measured communication interruption time which occurred
as a result of the switching of connected networks during
communication between MN and CN. We kept CN being
connected to IPv4 mobile network all the time, and we
manually switched MN’s connected in the follows Tab. I.

For the purpose of measurement, we created an application
which sends UDP packets at an interval of 50 ms, and made
communication from MN to CN. In order to measure the time
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Fig. 6. Results of suspended time by handover.

required for handover of NTMobile, we added a program
to output a time stamp for each processing, and calculated
the time required for handover process based on the time
differences and capturing results of communication packets.

The average values of 10 measurements of communication
interruption time associated with the handover processing
are shown in Fig. 6. Communication was interrupted for
2,476.2 ms in Case 1-1 and for 2,178.9 ms in Case 1-2. At
this occasion, disconnection from IPv4 mobile network was
conducted in iPhone 5 and Galaxy Nexus after authentication
and connection to APIPv6 were completed, and the above-
said communication interruption time occurred. Acquisition
process of IPv6 address by IPv6 stateless address autocon-
figuration [9] was performed after completing connection to
APIPv6, and for that operation, Case 1-1 required 350.0 ms
and Case 1-2 required 1,860.9 ms. These processing times
include process delays that occurred due to the times which the
mobile communication framework needed before it detected
the handover. After acquiring IPv6 address, handover process
by NTMobile was performed, and for that operation, Case 1-1
required 2,064.0 ms and Case 1-2 required 284.7 ms. Then,
communication by the application resumed after 62.3 ms in
Case 1-1, and after 32.9 ms in Case 1-2.

In Case 2-1 communication was interrupted for 623.3 ms,
and in Case 2-2 communication was interrupted for 7,754.2
ms. In Case 2-1, 109.7 ms was required from the time Wi-
Fi was inactivated before the mobile network was connected,
and in Case 2-2, the time required for the same operation
was 7,184.8 ms, which accounted for 92% of the entire com-
munication interruption time. These processing times include
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process delays that occurred due to the times which the
handover module needed before it detected the handover. After
completing connection to the mobile network, the handover
process by NTMobile was performed, and for that operation,
Case 2-1 required 461.4 ms and Case 2-2 required 538.9 ms.
Then, communication by the application resumed after 52.2
ms in Case 2-1, and after 30.5 ms in Case 2-2.

Case 1-2 required 5 more times than Case 1-1 for the
processing to acquire IPv6 address. The difference in the
processing times is thought to have occurred due to the
difference in the implementation modes of IPv6 of iOS and
Android, because in the case of Linux, it is set to wait for about
1 second when executing DAD (Duplicate Address Detection),
which is programmed to be performed at the time when IPv6
address is obtained [10].

Case 1-1 required 7 more times than 1-2 for the handover
processing by NTMobile. In Case 1-1, there was a waiting
time of about 900 ms before iPhone 5 sent NS (Neighbor
Solicitation) targeting at DC and RS, while the processing
by NTMobile was completed in about 230 ms. As there is
no waiting time occurring in Case 1-2 before Galaxy Nexus
sent NS, the delay is thought to have occurred due to the dif-
ference in the implementation modes of IPv6 communication
processes of iOS and Android OS.

B. Issues to Consider Hereafter
From the measurement results, it was found out that while

the processing by NTMobile at the time of handover takes only
less than 538.9 ms, a delay of more than 1 second occurs
due to the difference in the implementation modes of IPv6
communication processes of different kinds of smartphones. It
was also found out that in the case of Galaxy Nexus, it takes
more than 7 seconds before the connection to IPv4 mobile
network is made after Wi-Fi is inactivated, which time period
accounts for 92% of the entire communication interruption
time. When we assume the usage for voice and animation
that require real time communication, it is desirable to make
the communication suspended time as short as possible, and
therefore, it is required to reduce the delay time that occurs
in IPv6 communication processing and in the processing for
connection to the mobile network.

By utilizing the mobile communication framework based on
our proposed method, we can offer mobile communication,
such as communication between IPv4 and IPv6 networks and
mobility, to commercially available mobile terminals. On the
other hand, because it is necessary to make communication
by using the virtual socket API if the application is to
make mobile communication, the communication protocols
that can be utilized by the application are limited to such
communication protocols that are offered by virtual TCP/IP
stacks. For that reason, the application cannot make other
communications than UDP as long as it relies upon the proto-
type implementation mode outlined in Section IV-A above. In
lwIP (Lightweight TCP/IP stack)1 and uIP (micro IP)2, handy

1http://savannah.nongnu.org/projects/lwip/
2http://dunkels.com/adam/

implementation modes for TCP/IP in Userspace are made open
to the public, and they can be used not only for UDP but also
for the processing of TCP and ICMP. Thus, we think that
we will also be able to offer other communication protocols
such as TCP and ICPM in the virtual TCP/IP stack, by taking
advantage of these implementation modes hereafter.

V. SUMMARY

In this paper, we proposed a mobile communication frame-
work using NTMobile that realizes full connectivity and
mobility in the IPv4 and IPv6 networks. By using the mobile
communication framework, application developers are able to
easily develop applications with high-grade real-time commu-
nication as well as applications that can make direct com-
munication between mobile terminals without the necessity of
preparing for large-scale servers. Meanwhile, we implemented
a mobile application using a prototype of the mobile com-
munication framework to a commercially available Android
smartphone as well as to an iPhone, and conducted a behavior
verification and performance evaluation of the system. As the
result, we could verify that the securing of connectivity and
mobility are feasible without being affected by the existence of
NAT or the difference of IPv4/IPv6 networks. It was confirmed
that because of the reason that communication interruption
times occur at the time of handover owing to the network
connection processing, it is necessary to shorten this process.
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