
Realization and Evaluation of Java Wrapper
that calls the End-to-End Communication Library

Kazuki Shimizu†, Hidekazu Suzuki†, Katsuhiro Naito‡, Akira Watanabe†
†Graduate School of Science and Technology, Meijo University, Aichi 468-8502, Japan
‡Faculty of Information Science, Aichi Institute of Technology, Aichi 470-0392, Japan

Email: kazuki.shimizu@wata-lab.meijo-u.ac.jp,
hsuzuki@meijo-u.ac.jp, naito@pluslab.org, wtnbakr@meijo-u.ac.jp

I. INTRODUCTION

With the spread of mobile communication nodes such as
smartphones and wireless communication technologies, the
demand for the use of networks has been increasing. In the
case of IPv4 networks, exhaustion of global IP addresses has
been a serious problem. As a short-term solution for this
problem, the use of NAT is quite common. However, there
exists a problem which associated with NAT as well. Namely,
we cannot make communication from the global network
side to the private network side behind NAT. As a long-
term solution for the IPv4 address exhaustion problem, it is
necessary to migrate from IPv4 to IPv6 network environment.
However, there is no compatibility between these networks,
and thus, IPv6 is not widely spread at all. Because of the
above-said problem, the mixed environment of IPv4 and IPv6
networks seems to last for a long period of time. Accordingly,
”connectivity” is required so that communication can be
maintained regardless of the connected network environment.
Furthermore, the communication node cannot continue its
communication when it moves to another network, owing to
the change of its IP Address. Therefore, ”mobility” is required
so that the node can continue communication even if the
network is switched to another network.

In this paper, we define the communication that realizes
”connectivity” and ”mobility” at the same time ”end-to-
end communication”. As a technology that realizes end-to-
end communication, ”NTMobile” (Network Traversal with
Mobility)[1] has been proposed. NTMobile is a system which
allocates a unique virtual IP address to each node, and
every communication packet is encapsuled by the real IP
address. There is a communication library named ”NTMobile
Framework”[2], which is one of the implementation models
of NTMobile, realized in the application layer. Applications
can realize end-to-end communication by using this commu-
nication library. Yet, there is a problem that the development
environment for applications is limited to C-language because
the NTMobile Framework is implemented in C-language.
Therefore, in this paper, we have studied ”Java wrapper” which
calls the NTMobile Framework from Java. We have realized 2
types of Java wrappers, and confirmed that Java applications
can call the NTMobile Framework. We found out that there
was almost no difference in the performance between the 2

types of Java wrappers, although they had advantages and
disadvantages, depending on the situation.

II. NTMOBILE

A. Outline

NTMobile is composed of ”NTM Node” (NTMobile Node)
which has the functions of NTMobile, ”DC” (Direction Co-
ordinator) which manages virtual IP addresses and location
information of NTM Nodes and directs NTM Nodes to create
a UDP tunnel, and ”RS” (Relay Server) which relays packets
when NTM Node cannot make a direct route between NTM
Nodes. It is possible to set DCs and RSs in a distributed
manner on the Internet.

DC allocates a location-independent virtual IP address to
each NTM Node, and an application makes communication
based on the virtual IP address. Every packet based on the
virtual IP address is encapsulated by the real IP address of
NTM Node and sent to the network. Each NTM Node behind
NAT maintains communication path with DC so as to receive
control packets from DC all the time. The virtual IP address
does not change to whichever network the NTM Node moves
to. Thus, applications are not affected by the change in the
real IP addresses due to relocations, and mobility can be
maintained.

B. NTMobile Framework

The NTMobile Framework is one of the implementation
models of NTMobile which provides users as an application
library. The NTMobile Framework is implemented in C-
language, and it provides NTM socket API having compat-
ibility with BSD socket API. Applications can communicate
with NTMobile by calling the NTM socket API, and its usage
is almost the same as that of BSD socket API.

III. PROPOSED METHOD

In this paper, we propose 2 types of Java wrappers, and
they are herein named ”Inheritance-type Java Wrapper” and
”Factory-type Java Wrapper”. Both of them use ”JNA” (Java
Native Access), which is open source software, to call the
NTMobile Framework from Java. Fig. 1 shows the structure
of the Java wrappers.



データフロー

NTMobile Framework

Java Application

Java	StandardSocket Class

NTM	Socket	Class
(extends	Java	StandardSocket Class)

NTM	SocketFactory Class

NTM	SocketImpl Class

JNA

Java Standard
Socket	API

JavaNTM
Socket	API

Data	Flow

Java Wrapper

NTM
Socket	API

Fig. 1. Structure of Java Wrappers

TABLE I
MEASUREMENT RESULTS OF THE PROCESSING TIME OF

INHERITANCE-TYPE JAVA WRAPPER

Measurement Point Sending Time[ms] Receiving Time[ms]

Java Wrapper 0.83 0.17
NTMobile Framework 0.41 1.20

Total 1.24 1.37

A. Inheritance-type Java Wrapper

The Inheritance-type Java Wrapper calls the NTM socket
API by using the Java socket API from wrapper classes
which inherit the Java standard socket classes. When a Java
application calls API defined in the wrapper classes, Java
wrapper eliminates all differences between C-language and
Java. After that, the NTM socket API is called.

B. Factory-type Java Wrapper

The Factory-type Java Wrapper redefines the Java standard
socket API so as to call the NTM socket API by setting socket
implementation factory to the application. In this method, the
application cannot use the standard communication prepared in
Java, after the socket implementation factory is set. However,
the application can communicate with NTMobile by using the
Java standard socket API itself.

IV. EVALUATION

A. Measurement of Performance

We implemented both Inheritance-type and Factory-type
Java Wrapper, and applied them to Java application which
sends and receives messages by way of UDP. We constructed
DC and 2 NTM Nodes by virtual machines in the host machine
and connected them to the same network. After that, we have
verified the operation and measured the processing time.

TABLE I shows the measurement result of Inheritance-type
Java Wrapper, and TABLE II shows that of Factory-type Java
Wrapper. They are the average of 100 times of measurement.
From these results, we found out that there was almost no
difference in the processing time between the 2 types of Java
wrappers.

B. Comparison

TABLE III shows advantages and disadvantages of both
types. Our comparison was focused on the following 3 points.

1) Easiness of Development
2) Extendability

TABLE II
MEASUREMENT RESULTS OF THE PROCESSING TIME OF FACTORY-TYPE

JAVA WRAPPER

Measurement Point Sending Time[ms] Receiving Time[ms]

Java Wrapper 0.87 0.19
NTMobile Framework 0.43 1.22

Total 1.30 1.41

TABLE III
COMPARISONOF 2 TYPES OF JAVA WRAPPERS

Item (1) Item (2) Item (3)

Inheritance-type Java Wrapper ○ ○ △
Factory-type Java Wrapper ○ × ○

3) Scalability
In the comparison of Item (1), the application can com-

municate with NTMobile by the Java standard socket API
when it uses Factory-type Java Wrapper. On the other hand,
Inheritance-type Java Wrapper is required to use original
socket classes when the application wants to communicate
with NTMobile. However, the usage of API is the same as
that of the Java standard socket API. Thus, as for the easiness
of development, comparison result was the same.

In the comparison of Item (2), the application can se-
lect between the normal communication and the NTMobile
communication when it uses Inheritance-type Java Wrapper.
On the other hand, the application automatically selects the
NTMobile communication in the case of Factory-type Java
Wrapper. Thus, for the extendability, Inheritance-type Java
Wrapper is superior to Factory-type Java Wrapper.

In the comparison of Item (3), the application can change
the socket communication to the NTMobile communication by
setting socket implementation factory to the application in the
case of Factory-type Java Wrapper. Thus, for the scalability,
Factory-type Java Wrapper is superior to Inheritance-type Java
Wrapper.

V. CONCLUSION

In this paper, we discussed the Java wrapper that enables
Java to call the NTMobile Framework which was limited to
C-language applications. We have proposed 2 types of Java
wrappers, and realized both of Java wrappers and verified their
operation. We found that there was almost no difference in the
performance between the 2 types of Java wrappers, although
there were advantages and disadvantages, depending on the
situation. Hereafter, we plan to study other types of wrappers
with different programming languages.

REFERENCES

[1] K. Naito, K. Kamienoo, T. Nishio, H. Suzuki, A. Watanabe, K. Mori,
and H. Kobayashi. Proposal of Seamless IP mobility schemes:Network
traversal with Mobility(NTMobile). IEEE Global Communications Con-
ference(GLOBECOM)2012, pp. 2572–2577, 2012.

[2] K. Naito, K. Kamienoo, H. Suzuki, A. Watanabe, K. Mori, and
K. Kobayashi. End-to-end IP mobility platform in application layer for
iOS and Android OS. In Proc. of IEEE CCNC, 2014.



Realization	and	Evaluation	of	Java	Wrapper
that	Calls	the	End-to-End	Communication	Library

Kazuki Shimizu
Meijo University,	Japan

n Restrictions	of	networks
l NAT	traversal	problem
l Incompatibility	between	IPv4/v6
l Mobility

n NTMobile framework
l App	library	of	NTMobile functions.
l Written	in	C-language.

▶ It	can	be	called	only	by	C	apps.

n Java Wrapper
l Java	wrapper	enables	Java	applications

to	use	NTMobile framework.

Dual	Stack	Network

NAT
RS DC

AS

Handover

NTM	
Node

NTM	
Node

Real
Network

NTMobile
framework

IPv6	Global	NetworkIPv4	Global	Network

IPv4	Private	Network

Java
Wrapper

Solution	of restrictions

Right	now

NTMobile
framework

Until	now

C App C App Java	App

NTMobile has	become
easier	to	use.

Virtual
Network



Realization	and	Evaluation	of	Java	Wrapper
that	Calls	the	End-to-End	Communication	Library

Kazuki	Shimizu†,	Hidekazu Suzuki†,	Katsuhiro	Naito‡,	Akira	Watanabe†
†Graduate	School	of	Science	and	Technology,	Meijo University,	Japan
‡Faculty	of	Information	Science,	Aichi	Institute	of	Technology,	Japan

pThe	technology	to	solve	restrictions	of	existing	networks
–Applications	establish	connections	based	on	Virtual	IP	address.
–A	packet	based	on	Virtual	IP	address	is	encapsulated
by	Real	IP	address.
–NTMobile is	realized	in	the	user	space	by	using
NTMobile framework	library(NTMfw).

2.	Network	Traversal	with	Mobility	(NTMobile)

3.	Structure of	Java	Wrapper

pJava	Wrapper
–Creates	the	NTMobile socket	class	inheriting	Java	standard	socket	class.
–Defines	NTMobile socket	API	in	NTMobile socket	class,	and	calls	NTMobile framework	library.

pRestrictions	of	existing	networks
lNAT traversal	problem
lIncompatibility	between	IPv4	and	IPv6
lMobility

pNTMobile framework	(NTMfw)
–NTMfw is	the	application	library	that	executes	NTMobile functions.
−NTMfw is	written	in	C-language.

pJava	wrapper
–Java	wrapper	enables	Java	applications	to	use	NTMfw.

1.	Introduction

pRealization	of	wrappers	in	other	languages	such	as	Python.
pAddition	of	supporting	communication	protocols	such	as	HTTP.

5.	Future	Work

pMeasurement	results	of	the	processing	time.
–(Average	of	100	times	measurements)

4.	Evaluation

Java Wrapper

JNA	(Java	Native	Access)

NTMobile
Socket	Class

NTMobile
I/O Class

NTMobile API Class

Java	Application

Item Sending	time[ms] Receiving	Time	[ms]

Java	Wrapper 0.84 0.18

NTMfw 0.48 1.23

Total 1.32 1.41

NTMobile
framework

IPv4	Global	Network IPv6	Global	Network

IPv4	Private	Network

Dual	Stack	Network

NAT
RS DC AS

Handover

NTM	
Node

NTM	
Node

Real
Network

Virtual
Network

Virtual	Machines

DCCNMN

Linux

l Sending	data by	the	Java	socket	API.

l Conversion	of	the	type	of	sending	data.
l Mapping	of	the	NTMobile socket	API.
l Sending	data	by	the	NTMobile socket	API

NTMobile
framework

l Generation	of	the	packets	based	on	Virtual	IP	address.
l Packet	encryption	and	MAC	authentication.
l Sending	data	by	the	C	socket	API.

l Sending	packets	after	encapsulation.	

Java Wrapper

Application

NTMobile
framework UDP TCP

Linux

Packet	Manipulation	Module

C	Application Java	
Application

Python
Application

Java	Wrapper

UDP TCP

Linux

Python	
Wrapper

HTTP

NTMobile removes all	the	above	restrictions.

AS(Account	Server)

DC(Direction	Coordinator)

RS(Relay	Server)

NTM(NTMobile)	Node

UDP	Tunnel

Virtual	IP	Address

It	can	be	called	only	by	C	applications.

NTMobile has	become	easier	to	use.

MN(Mobile	Node)

CN(Correspondent	Node)


