

本資料について

■本資料は下記書籍を基にして作成されたものです。 文章の内容の正確さは保障できないため、正確な 知識を求める方は原文を参照してください。

書籍名:IPsec徹底入門

著者: 小早川知明

発行日:2002年8月6日

発売元: 翔泳社

IPsec徹底入門

名城大学理工学部 渡邊研究室 村橋 孝謙

目次

■ 第1章 IPsecアーキテクチャ

■ 第2章 IPsec Security Association

■ 第3章 Internet Key Exchange

第1章

IPsecアーキテクチャ

はじめに

■ 現在、どこからでもインターネットに接続可能になっている

■さまざまなセキュリティ機能が必要

身を守るべき攻撃

- ■受動的な攻撃
 - □盗聴
 - □トラフィック解析
- ■能動的な攻撃
 - □なりすまし
 - □リプレイ攻撃
 - □メッセージの改ざん
 - □DoS攻撃

IPsecとは

■ 現在使用されているアプリケーション全てに 個別にセキュリティ機能を実現することは 不可能

> IPレイヤにおいて、全てのIPパケットに セキュリティを提供

> > **IPsec**

.

必要なセキュリティ機能(1/3)

- ■秘密性
- 認証(本人性確認)
- 認証(完全性保証)
- ■否認不能性
- ■アクセス制御
- ■可用性

IPsecは安全なVPNの実現するための解決策

必要なセキュリティ機能(2/3)

- ■秘密性
 - □盗聴・トラフィック解析からの保護
- 認証(本人性確認)
 - □表示されたメッセージ送信元の保証
 - □意図した通信相手であることの保証
- 認証(完全性保証)
 - □メッセージが改ざんされていないことの保証

必要なセキュリティ機能(3/3)

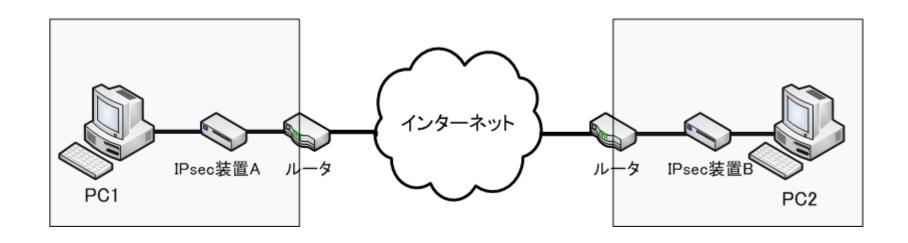
- ■否認不能性
 - □送信者が確かにメッセージを送信したことや、 受信者が確かにメッセージを受信したことを証明
- アクセス制御
 - □通信を行う相手やプロトコルなどによって、通信の通 過・遮断を制御する
- ■可用性
 - □システムが常に使用できる

IPsecのメリット

- VPNの各拠点にIPsec装置を置くだけで良い
- アプリケーションに変更を加える必要がない

■ LAN内部の機器に暗号化等の負荷がかからない

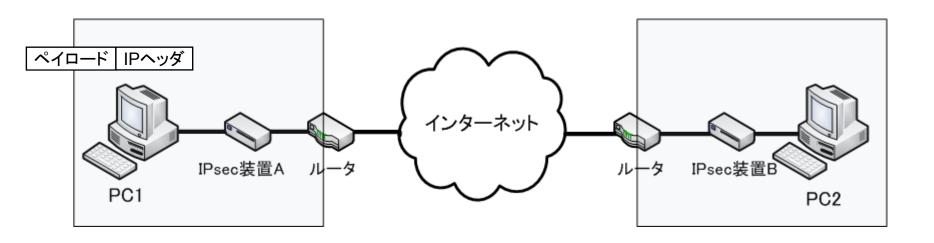
IPsecの実現要素


パケットのカプセル化 (セキュリティそのものを提供)

■パケットの暗号化

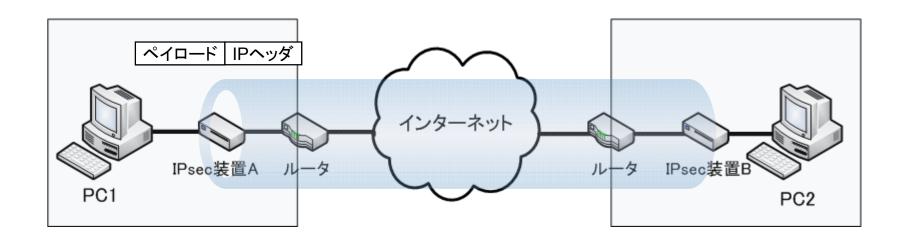
(秘密対称鍵・IPsecコネクションの生成、管理)

M


IPsecの動作イメージ

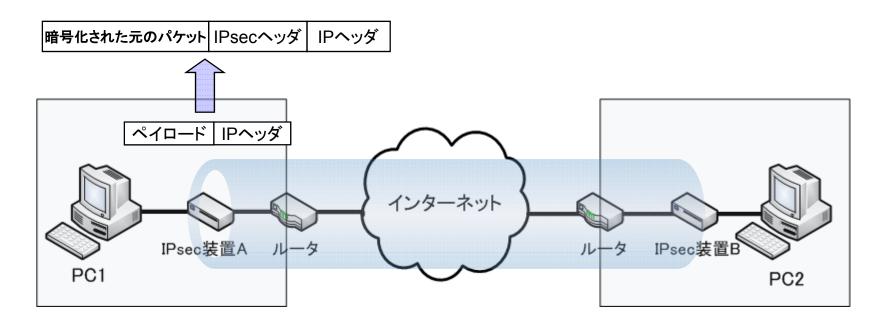
- IPsec装置Aの設定
 - □PC1からPC2向けのパケットをIPsec化して IPsec装置Bに転送

M


IPsecの動作イメージ

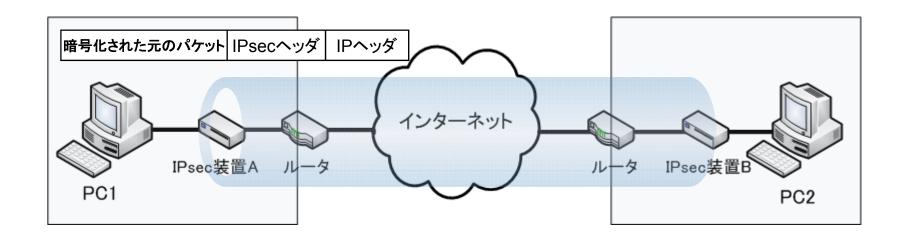
■ PC1からPC2向けのパケットをIPsec装置Aに送信

M

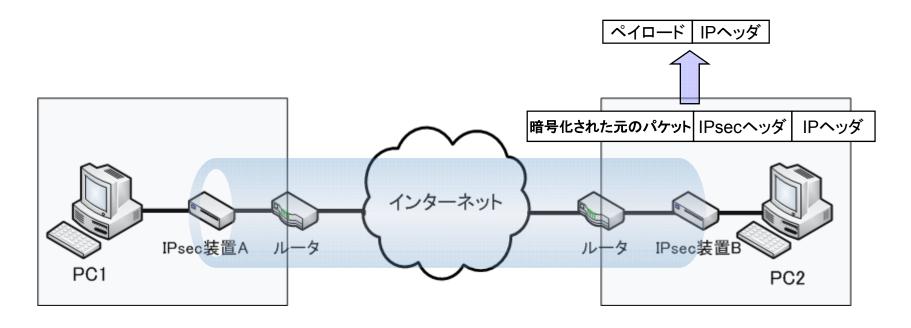

IPsecの動作イメージ

■ IPsecトンネルの生成、または既存のトンネルの使用

м

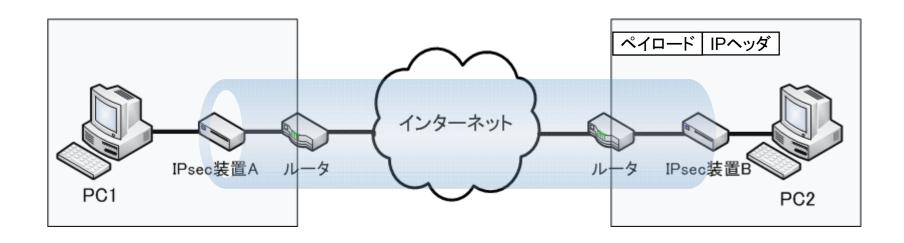

IPsecの動作イメージ

■ パケットのIPsec化


IPsecの動作イメージ

- IPsec化されたパケットをルータAに転送
- 普通のパケットとしてIPsec装置Bへ送信。

100


IPsecの動作イメージ

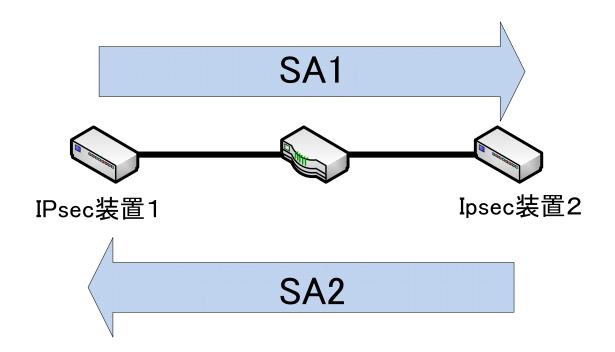
■ パケットの復号化

100

IPsecの動作イメージ

■ PC2はPC1より送信されたパケットを受信

SA (Security Association)とは (1/3)


- IPsecトンネルを正式にはSAと呼ぶ
- IPsec装置間で生成される
- すべてのIPパケットは、いずれかのSAに 所属して送り出される

IPsecのセキュリティ機能は SAによって実現される

SA (Security Association)とは (2/3)

- ユニディレクションである
- SAごとに独立したアルゴリズム・鍵などを持つ

SA (Security Association)とは (3/3)

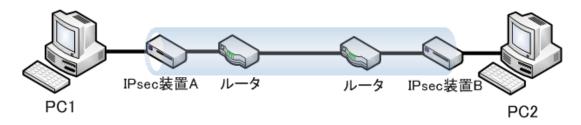
- 2種類のプロトコルを持つ
 - □ ESP (Encapsulating Security Payload)
 - パケットの暗号化機能
 - □ AH (Authentication Header)
 - パケットの改ざん検知機能

パケットのESP/AH化

ESPの提供するセキュリティ機能

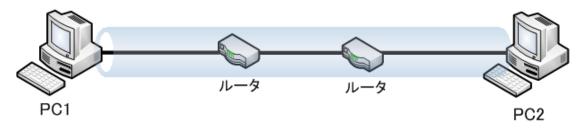
- 秘密性
 - □パケットの暗号化
- 認証(本人性確認)
 - □ 送信元の保証(ペイロードの改ざん防止のみ)
- 認証(完全性保証)
 - □パケットが改ざんされていないことの保証
- アクセス制御
 - □ パケットのフィルタリング

AHの提供するセキュリティ機能


- 認証(本人製確認)
 - □リプレイ攻撃の防止
 - □パケット送信元を完全に保証 (IPヘッダまで含めて認証 ESPより強力)
- 認証(完全性保証)
 - □パケットが改ざんされていないことの保証
- アクセス制御
 - □ パケットのフィルタリング

м

カプセル化モード


■トンネルモード

- □ 実際に通信するホスト以外がパケットをIPsec化
- □ エンドツーエンドでの認証・暗号化に使用

■トランスポートモード

- □ 通信するホスト同士が自身のパケットをIPsec化
- □ ネットワーク間の通信に対して認証や暗号化を行う場合に使用

パケットのIPsec化(ESP)

元のパケット

宛先 送信元	TCPへッダ	データ		
IPヘッダ				
元のパケット				

トンネルモードでIPsec (ESP)化されたパケット

宛先 送信元 新しいIPヘッダ	ESPヘッダ	宛先 送信元 元のIPヘッダ	TCPへッダ	データ	ESP トレイラ	ESP 認証値
			元のパケット			
		暗号化される範囲				
		認証(完全性保証)の対象範囲				

トランスポートモードでIPsec (ESP)化されたパケット

宛先 送信元 元のIPヘッダ	ESPヘッダ	TCPヘッダ	データ	ESP トレイラ	ESP 認証値
		元のパケットの	ペイロード部分		
		暗	号化される範囲		
		認証(

パケットのIPsec化(AH)

元のパケット

宛先 送信元	TCPへッダ	データ		
IPヘッダ				
元のパケット				

トンネルモードでIPsec (AH)化されたパケット

宛先 送信元	АН	宛先 送信元	TCPへッダ	データ	
新しいIPヘッダ		元のIPヘッダ			
認証(完全性保証)の対象範囲 ただしIPヘッダの一部転送中可変フィールドは除く					

トランスポートモードでIPsec (AH)化されたパケット

宛先 送信元	АН	TCPへッダ	データ		
元のIPヘッダ		元のパケットのイ	ペイロード部分		
認証(完全性保証)の対象範囲 ただしIPヘッダの一部転送中可変フィールドは除く					

カプセル化モードとプロトコル

- ■カプセル化モード □トランスポートモード ^{*}
 □トンネルモード

- ■プロトコル

組み合わせは自由

ne.

カプセル化モードとプロトコル

- ESP単体では転送用IPヘッダの改ざんは検知不可能
 - □不要ならESPのみで十分
 - □ ESPで暗号化 → AHで認証
- ESPに認証(完全性保証)機能を提供
 - □AHの必要性の減少

トンネルモードでIPsec (ESP)化されたパケット

宛先 送信元 新しいIPヘッダ	ESPヘッダ	宛先 送信元 元のIPヘッダ	TCPへッダ	データ	ESP トレイラ	ESP 認証値
			元のパケット			
		暗号化される範囲 認証(完全性保証)の対象範囲				

トランスポートモードでIPsec (ESP)化されたパケット

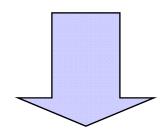
宛先 送信元 元のIPヘッダ	ESPヘッダ	TCPヘッダ	データ	ESP トレイラ	ESP 認証値
		元のパケットの 暗 認証	対象範囲		

第2章

IPsec Security Association

SAの属性

- セキュリティプロトコル
 - □ ESPまたはAH
- カプセル化モード
 - □ トンネルモードまたはトランスポートモード
- Security Parameters Index (SPI)
 - □ SAを識別するための識別子 通信相手のアドレス等と組み合わせて使用
- 暗号化・認証アルゴリズム
 - □ 3DES, MD5など
- セレクタ
 - □ SAに流すパケットの指定


暗号化アルゴリズム

- IPsecでは、同じ秘密鍵を送信者と受信者で共有する (秘密対象鍵)
- DES,3DESが多く使用される
- ブロック暗号
 - □ 決められた長さのブロック単位に暗号化を行う
- CBCモード
 - □ 暗号化するブロックの平文と,1つ前のブロックの暗号化結果とのXOR値を暗号化する

認証アルゴリズム

- 認証(完全性保証)
- 認証(本人性確認)

- 一方向性ハッシュ関数により確認
 - MD5
 - □ SHA-1
 - □ HMAC (鍵付きハッシュ関数)

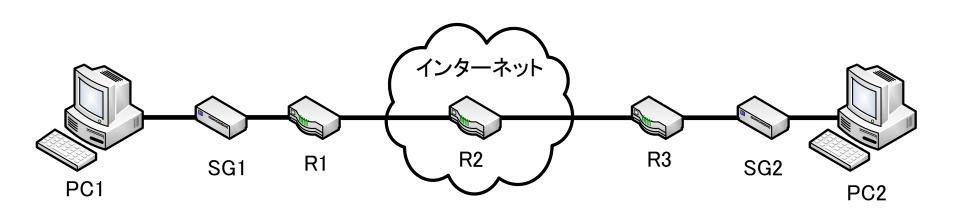
セレクタ

- パケットをIPsec化するルールを決定
 - □ 宛先IPアドレス
 - □送信元IPアドレス
 - □トランスポートレイヤプロトコル(TCP,UDPなど)
 - □ 送信元ポート,宛先ポート
 - □ユーザ名,ホスト名

第3章

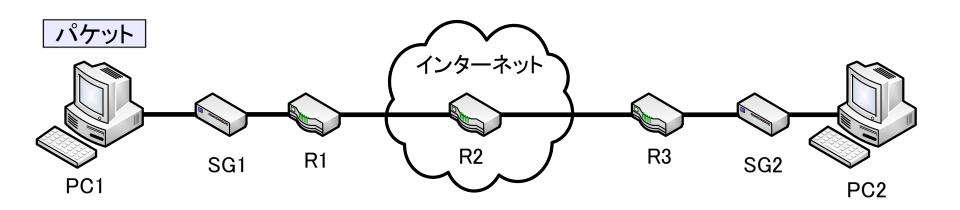
Internet Key Exchange

IKE (Internet Key Exchange)とは


- SAの自動生成・管理プロトコル
 - □SA自動生成
 - IPsec通信が必要になると、オンデマンドで生成
 - □SAの管理
 - SAが生成されてからの期間や使用状況を監視
 - SAを秘密対象鍵ごと作り直す

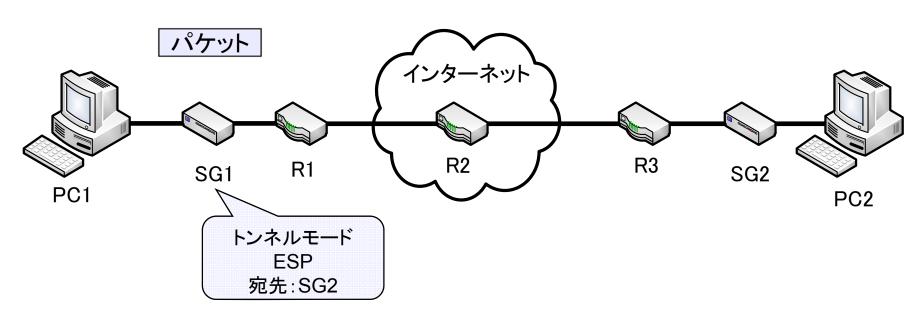
IKEの基本機能

- Proposal (SA生成の要求)交換
 - □生成するSAのパラメータをネゴシエートして決定
- Diffie-Hellman交換
 - □生成するSAの秘密対象鍵を安全に自動生成
- IKE相手の認証(本人性確認)
 - □通信相手が偽者でないことを確認



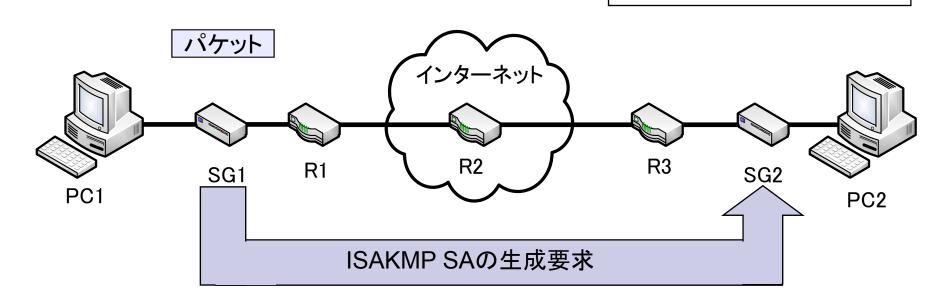
• PC1がPC2へpingを打つ

SG: セキュリティゲートウェイ

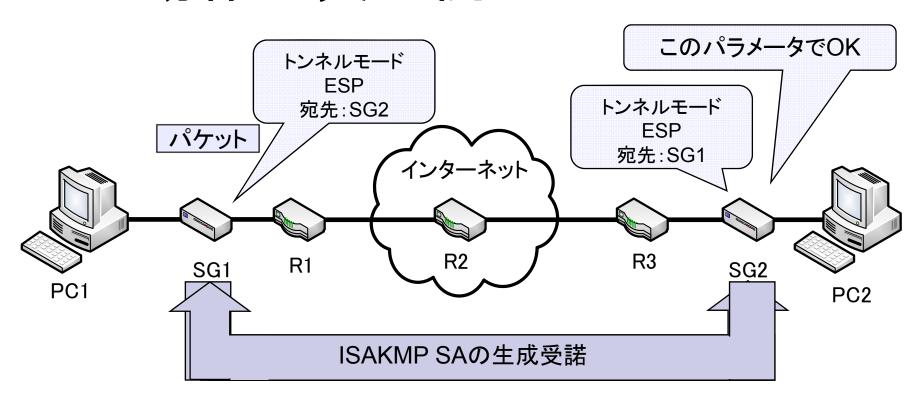

R:ルータ

• パケットをSG1に向けて送信 (SG1: PC1のデフォルトゲートウェイ)

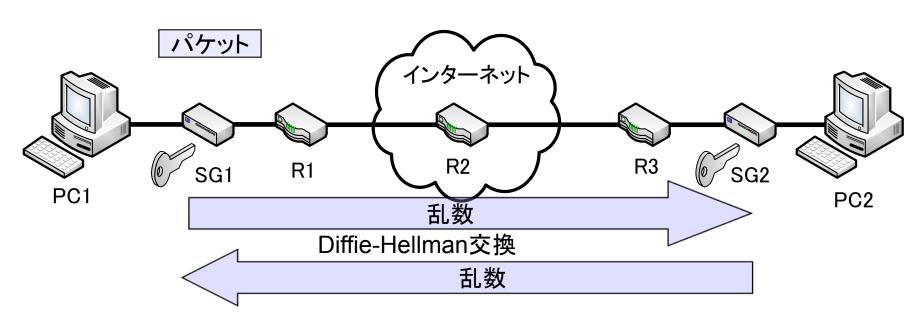
IKE動作の典型例



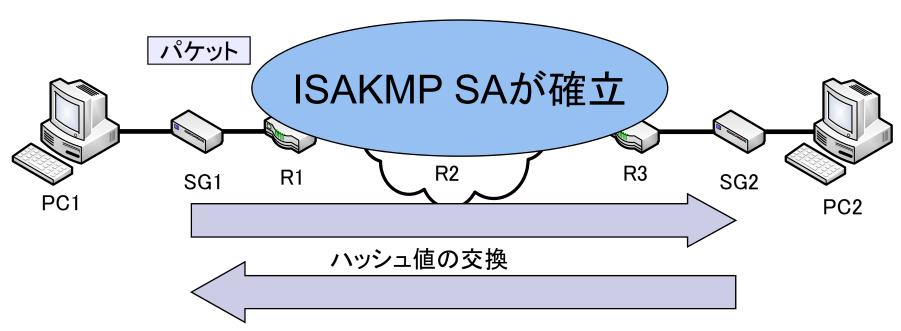
・SG1のセキュリティポリシーを参照し、IPsec化

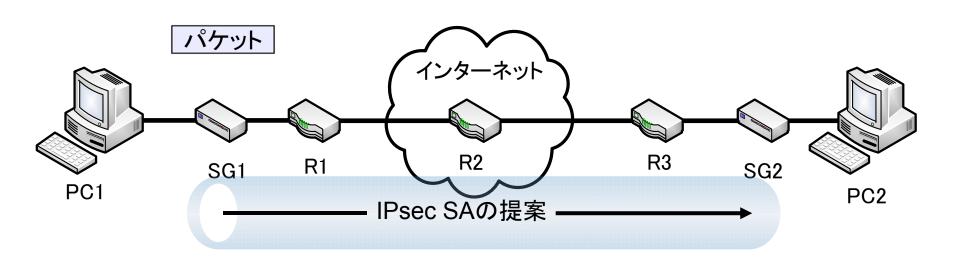

ISAKMP SA:

IKEによりSAを自動生成する際に IKE自身が制御信号をやり取りする 制御用チャネル

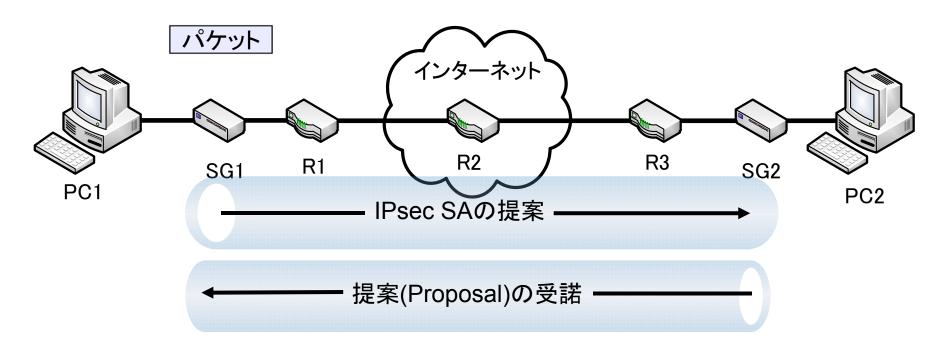

•SG1がISAKMP SAの生成要求をSG2に送信 (Proposal)

IKE動作の典型例

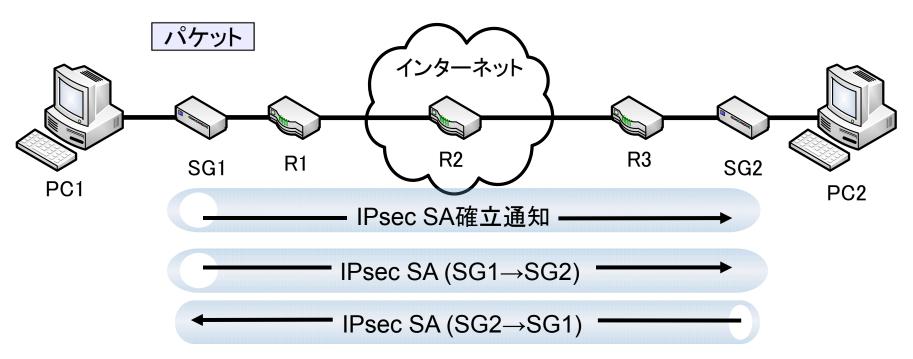

•SG1がISAKMP SAの生成要求をSG2に送信 (Proposal)



•Diffie-Hellman交換により秘密対象鍵を生成

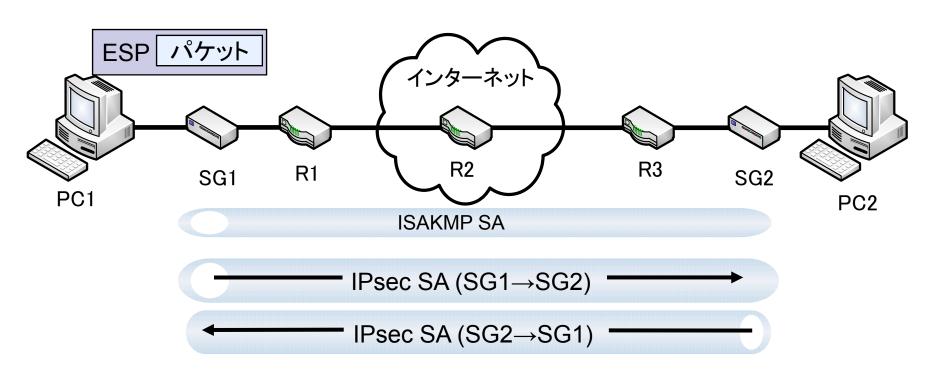


- •IKE相手が本物かどうかの確認
- ・認証(本人性確認)値の交換



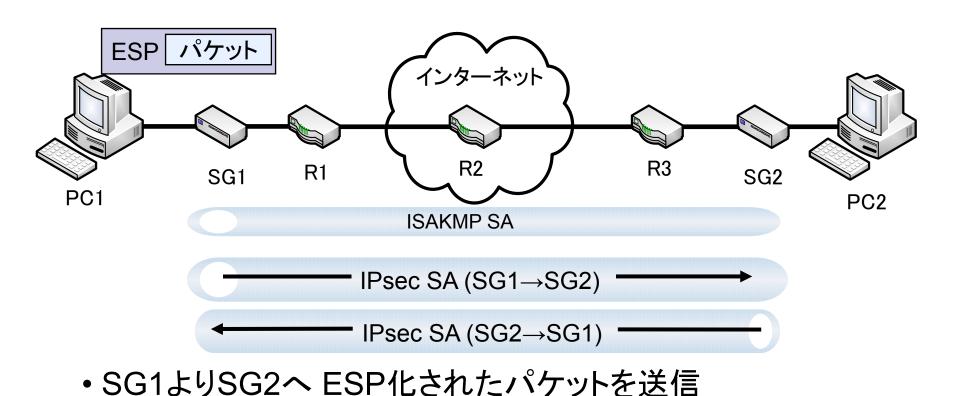
- •SG1はパケットをIPsec化するためのSAのProposalを セキュリティポリシーに従ってSG2に送信
- •暗号化に使用する鍵を作るための乱数も同時に送る
- •ISAKMP SAを通じているため暗号化されている

・受諾したSAと、暗号化に使用する鍵を作るための 乱数を返信


IKE動作の典型例

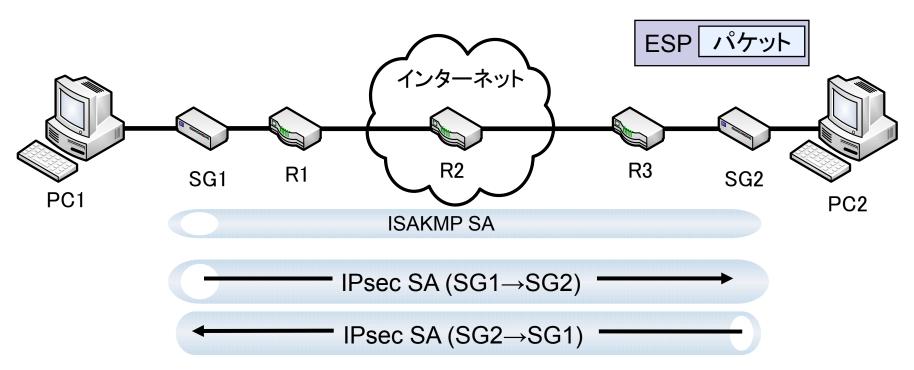
• SG1よりSG2へ IPsec SA確立の通知

.

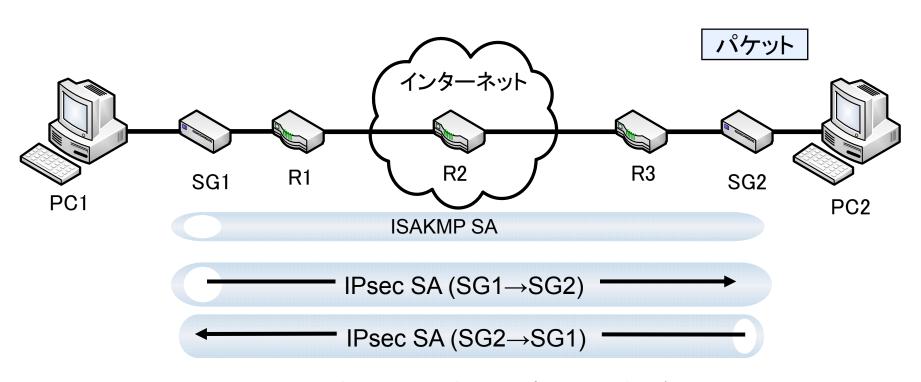

IKE動作の典型例 (パケットのIPsec化)

• パケットをESP化

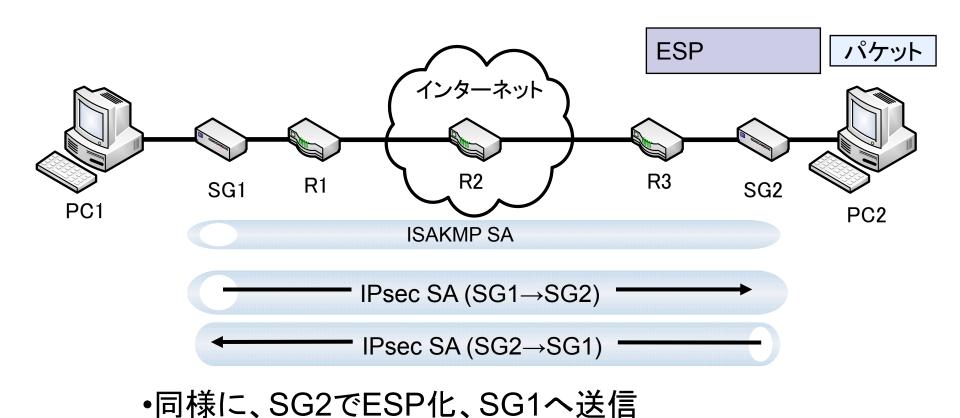
.


IKE動作の典型例 (パケットのIPsec化)

49

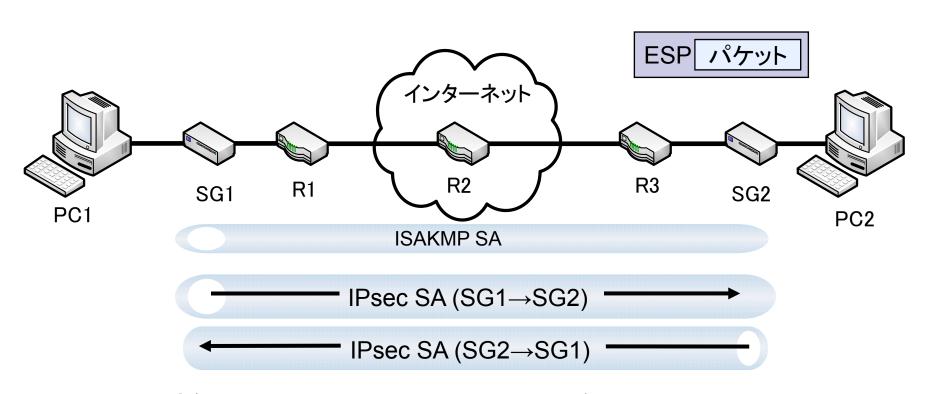

M

IKE動作の典型例 (パケットのIPsec化)

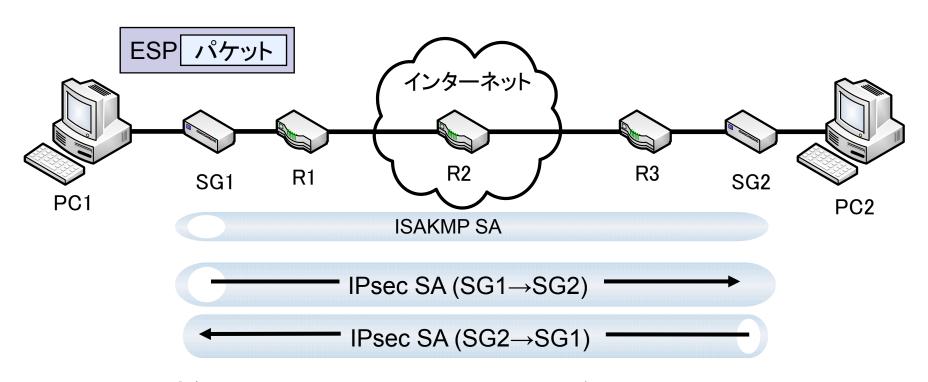

・秘密対象鍵を用いて復号化

IKE動作の典型例 (PC2からの応答)

•SG1はPC2へ復号化されたパケットを送信


IKE動作の典型例 (PC2からの応答)

SG2で復号化、PC1へ転送


52

IKE動作の典型例 (PC2からの応答)

•同様に、SG2でESP化、SG1へ送信 SG2で復号化、PC1へ転送

IKE動作の典型例 (PC2からの応答)

•同様に、SG2でESP化、SG1へ送信 SG2で復号化、PC1へ転送

最後に

- IPsecとは
- SA(ESP,AH)の概要
- IKEの動作例